[DissKoll] DissKoll, 29. Mai, 17:15 Alice Mikikits-Leitner

Clemens Hanel clemens.hanel at univie.ac.at
Tue May 20 16:55:29 CEST 2008


Liebe Besucherinnen und Besucher des Dissertantenkolloquiums!

Am Donnerstag den 29. Mai findet der nächste Vortrag im Rahmen des  
Dissertantenkolloquiums in diesem Semester statt. Alice Mikikits- 
Leitner spricht über "Almost everything you ever wanted to know about  
the Korteweg-de Vries equation".

Zusammenfassung: This talk presents a study on a famous example of a  
nonlinear wave equation, the Korteweg-de Vries equation (KdV). First  
we will consider the linearized KdV equation and describe the long  
time asymptotics of the solutions by using the method of stationary  
phase. Then we will study the nonlinear case. Finally, we will solve  
the Cauchy problem for the KdV equation with rapidly decaying initial  
data by the inverse scattering method, which represents a nonlinear  
analog of the Fourier transform to solve linear partial differential  
equations.
If time permits the Lax approach for the KdV equation will be presented.

Donnerstag, 15. Mai 2008, 17:15, Seminarraum C 2.09
Kaffee und Kuchen ab 17:00 im Common Room C 2.06

Wir freuen uns auf euer Kommen,

Alice Mikikits-Leitner
Clemens Hanel
Herwig Spornberger


Das weitere Programm für dieses Semester findet ihr auf http://www.mat.univie.ac.at/~disskoll/


+++++++++++++

Dear visitors of the Dissertantenkolloquium,

The next talk at the Dissertantenkolloquium will be on Thursday the  
29th of May. Alice Mikikits-Leitner will be talking on "Almost  
everything you ever wanted to know about the Korteweg-de Vries  
equation".

Abstract: This talk presents a study on a famous example of a  
nonlinear wave equation, the Korteweg-de Vries equation (KdV). First  
we will consider the linearized KdV equation and describe the long  
time asymptotics of the solutions by using the method of stationary  
phase. Then we will study the nonlinear case. Finally, we will solve  
the Cauchy problem for the KdV equation with rapidly decaying initial  
data by the inverse scattering method, which represents a nonlinear  
analog of the Fourier transform to solve linear partial differential  
equations.
If time permits the Lax approach for the KdV equation will be presented.

Thursday, 29th of May 2008, 17:15, Seminar-Room C 2.09
Coffee and cakes served from 17:00 in the Common Room C 2.06

We are looking forward to your attendance,

Alice Mikikits-Leitner
Clemens Hanel
Herwig Spornberger


An overview on the upcoming talks can be found at http://www.mat.univie.ac.at/~disskoll/


More information about the DissKoll mailing list