[DissKoll] Erratum: DissKoll, 29. Mai, 17:15 Alice Mikikits-Leitner
Clemens Hanel
clemens.hanel at univie.ac.at
Tue May 20 17:05:26 CEST 2008
Leider hatte das letzte Mail ein falsches Datum!
Der Vortrag findet am 29. Mai statt!
---------------------------------------------
Liebe Besucherinnen und Besucher des Dissertantenkolloquiums!
Am Donnerstag den 29. Mai findet der nächste Vortrag im Rahmen des
Dissertantenkolloquiums in diesem Semester statt. Alice Mikikits-
Leitner spricht über "Almost everything you ever wanted to know about
the Korteweg-de Vries equation".
Zusammenfassung: This talk presents a study on a famous example of a
nonlinear wave equation, the Korteweg-de Vries equation (KdV). First
we will consider the linearized KdV equation and describe the long
time asymptotics of the solutions by using the method of stationary
phase. Then we will study the nonlinear case. Finally, we will solve
the Cauchy problem for the KdV equation with rapidly decaying initial
data by the inverse scattering method, which represents a nonlinear
analog of the Fourier transform to solve linear partial differential
equations.
If time permits the Lax approach for the KdV equation will be presented.
Donnerstag, 29. Mai 2008, 17:15, Seminarraum C 2.09
Kaffee und Kuchen ab 17:00 im Common Room C 2.06
Wir freuen uns auf euer Kommen,
Alice Mikikits-Leitner
Clemens Hanel
Herwig Spornberger
Das weitere Programm für dieses Semester findet ihr auf http://www.mat.univie.ac.at/~disskoll/
+++++++++++++
Dear visitors of the Dissertantenkolloquium,
The next talk at the Dissertantenkolloquium will be on Thursday the
29th of May. Alice Mikikits-Leitner will be talking on "Almost
everything you ever wanted to know about the Korteweg-de Vries
equation".
Abstract: This talk presents a study on a famous example of a
nonlinear wave equation, the Korteweg-de Vries equation (KdV). First
we will consider the linearized KdV equation and describe the long
time asymptotics of the solutions by using the method of stationary
phase. Then we will study the nonlinear case. Finally, we will solve
the Cauchy problem for the KdV equation with rapidly decaying initial
data by the inverse scattering method, which represents a nonlinear
analog of the Fourier transform to solve linear partial differential
equations.
If time permits the Lax approach for the KdV equation will be presented.
Thursday, 29th of May 2008, 17:15, Seminar-Room C 2.09
Coffee and cakes served from 17:00 in the Common Room C 2.06
We are looking forward to your attendance,
Alice Mikikits-Leitner
Clemens Hanel
Herwig Spornberger
An overview on the upcoming talks can be found at http://www.mat.univie.ac.at/~disskoll/
More information about the DissKoll
mailing list