[DissKoll] Colloquium for Master and PhD Students: 12th March 2013 6pm D101

Martin Köberl martin.koeberl at gmail.com
Fri Mar 1 00:06:43 CET 2013


(BITTE BEACHTEN: ZEIT UND ORT SIND GEÄNDERT)
(English version follows below; PLEASE NOTE THAT TIME AND PLACE HAVE
CHANGED)
Liebe Mitstudierende und Disskoll-Interessierte,
wir freuen uns den ersten Vortrag im Sommersemester ankündigen zu dürfen:

Christoph Harrach wird am 12. März zu „Poisson Transformation of
Differential Forms in Real Hyperbolic Space“ vortragen. Der Vortrag beginnt
um 1800 im D101 und wird etwa eine Stunde dauern. Eine Inhaltsangabe des
Vortrags ist am Ende dieser Email zu finden.

Themen-/Vortragenden-/
Vortragsvorschläge sind jederzeit per Email willkommen.

Wir verbleiben mit besten Grüßen,
Martin Köberl (martin.koeberl at gmail.com)
Fabio Tonti (ftonti at gmail.com)

Mailingliste: http://lists.univie.ac.at/mailman/listinfo/disskoll.mathematik
Webseite: http://mat.univie.ac.at/%7Edisskoll/
-----

Dear fellow students and subscribers,
We are happy to announce the first talk in the colloquium for the summer
term 2013.

On March 12, Christoph Harrach will speak on „Poisson Transformation of
Differential Forms in Real Hyperbolic Space“. The talk will start at 6 pm
in D101 and will last about one hour. You can find an abstract at the
bottom of this email.

If you are interested in giving a talk or know someone who might be, feel
free to send us an email.

All the best,
see you soon,
Martin Köberl (martin.koeberl at gmail.com)
Fabio Tonti (ftonti at gmail.com)

Mailing list: http://lists.univie.ac.at/mailman/listinfo/disskoll.mathematik
Web page: http://mat.univie.ac.at/%7Edisskoll/
-----


Abstract:
„In 1986, Gaillard constructed an invariant linear transformation between
differential forms on the conformal sphere and the hyperbolic space, which
generalizes the classical Poisson transformation on the unit ball. In this
talk the basic concepts of differential geometry are introduced which are
needed to understand this transformation. Furthermore, we will show how to
reduce Gaillard's geometric construction to an algebraic problem which can
be solved algorithmically and which allows immediate generalizations.“
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.univie.ac.at/pipermail/disskoll.mathematik/attachments/20130301/9f32d7d0/attachment.html>


More information about the DissKoll.Mathematik mailing list