

FAKULTÄT FÜR MATHEMATIK Dekan Univ.-Prof. Dr. Radu Ioan Boţ

Einladung zur öffentlichen Defensio

Lukas KÖHLDORFER

Thema der Dissertation

Topics in the Theory of Localized Frames

Abstract:

This doctoral thesis consists of three papers in frame theory. Frames are countable families of vectors in a separable Hilbert space, which enable a bounded, linear, and stable reconstruction of any vector in that space from its frame coefficients. A natural generalization of frames are operator-valued frames, which analogously provide perfect reconstruction from linear higher-rank measurements. In this thesis, we study (operator-valued) frames whose elements satisfy an additional incoherence property called localization. The quality of localization is measured by the o"-diagonal decay of the (operator-valued) Gram matrix of the underlying (operator-valued) frame. More precisely, such a frame is called localized, if its associated Gram matrix belongs to some suitable inverse-closed matrix algebra.

The first paper is devoted to the study of algebras of operator-valued matrices, which are inverse-closed in the Banach algebra of bounded operators acting on the Bochner space of square-summable Hilbert space-valued sequences. In particular, we study operator-valued versions of weighted Schur-type algebras, the Jaffard algebra and generalizations of it, the Baskakov-Gohberg-Sjöstrand algebra, and their anisotropic versions, and show that each of these matrix algebras is inverse-closed and, in fact, a symmetric Banach algebra.

With the matrix algebras from the first paper in mind, we introduce an abstract localization concept for operator-valued frames in the second paper. We prove that intrinsic localization of an operator-valued frame is preserved by its canonical dual. We show that for any localized operator-valued frame, there is a whole family of associated (quasi-) Banach spaces attached to it. We prove that the series associated with perfect reconstruction of the given operator-valued frame converges not only in the underlying Hilbert space but also in each of these spaces. Finally, we apply our theory to irregular Gabor g-frames.

In the third paper, we prove the equivalence of the frame property of a given suitably localized sequence in a Hilbert space and nine other conditions that do not involve an

inequality. This result is applied in the context of shift-invariant spaces, where we obtain new conditions for stable sets of (irregular) sampling.

Prüfungssenat

Univ.-Prof. Mag. Dr. Andreas Cap (Vorsitz, Universität Wien)

Mag. Dr. Peter Balazs, Privatdoz. (Universität Wien)

Prof. Dr. Emily J. King (Colorado State University)

Prof. Dr. Ole Christensen (Danmarks Tekniske Universitet)

Zeit und Ort

Mittwoch, 29. Oktober 2025, 10:00 Uhr

Hörsaal 9, 1. Stock, Oskar-Morgenstern-Platz 1, 1090 Wien