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ABSTRACT
Fueled by developments in computational neuroscience, there has been increasing interest in the underlying neu-
rocomputational mechanisms of psychosis. One successful approach involves predictive coding and Bayesian
inference. Here, inferences regarding the current state of the world are made by combining prior beliefs with incoming
sensory signals. Mismatches between prior beliefs and incoming signals constitute prediction errors that drive new
learning. Psychosis has been suggested to result from a decreased precision in the encoding of prior beliefs relative
to the sensory data, thereby garnering maladaptive inferences. Here, we review the current evidence for aberrant
predictive coding and discuss challenges for this canonical predictive coding account of psychosis. For example,
hallucinations and delusions may relate to distinct alterations in predictive coding, despite their common co-
occurrence. More broadly, some studies implicate weakened prior beliefs in psychosis, and others find stronger
priors. These challenges might be answered with a more nuanced view of predictive coding. Different priors may be
specified for different sensory modalities and their integration, and deficits in each modality need not be uniform.
Furthermore, hierarchical organization may be critical. Altered processes at lower levels of a hierarchy need not be
linearly related to processes at higher levels (and vice versa). Finally, canonical theories do not highlight active
inference—the process through which the effects of our actions on our sensations are anticipated and minimized. It is
possible that conflicting findings might be reconciled by considering these complexities, portending a framework for
psychosis more equipped to deal with its many manifestations.
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There is a pressing need to understand and better treat psy-
chosis (i.e., psychotic symptoms and psychotic disorders).
While dopamine antagonists are effective, many patients
experience residual symptoms (1). They have poor functional
outcome and a high risk of suicide (2). Furthermore, the side
effects of many antipsychotics can lead to poor adherence.
Here, we argue that single-level accounts of psychosis, such
as the dopamine hypothesis, are too reductionist on their own
and will achieve full value only when embedded in a more
complex explanatory framework that unites several levels of
explanation [e.g., Maia and Frank (3)]. Predictive coding and
Bayesian inference (4–6) may provide such a framework, link-
ing the neurobiology of psychosis with its clinical phenome-
nology by way of computational processes. We will critically
evaluate this framework and suggest future lines of inquiry.
PREDICTIVE CODING AS HIERARCHICAL BAYESIAN
INFERENCE

Von Helmholtz’s (7) idea of unconscious inference held that the
brain uses learned predictions to infer the causes of incoming
sensory data. This process can be formalized as Bayesian
inference (5,8), whereby a probabilistic prediction (prior) is
combined with observed sensory data (likelihood) to compute
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a posterior probability (posterior). The posterior corresponds to
the percept that is most likely, given the prior and the likelihood
(9). This may be implemented in the brain through predictive
coding, but there are alternatives (10,11). Predictive coding
conceives of the brain as a hierarchy whose goal is to maxi-
mize the evidence for its model of the world by comparing prior
beliefs with sensory data, and using the resultant prediction
errors (PEs) to update the model (Figure 1). Model evidence
can also be maximized through active inference—that is, by
acting on the world (and thus selecting sensory evidence) to
minimize PEs (12). Moreover, hierarchical Bayesian inference
entails modeling ourselves as agents who change the world:
indeed, in this scheme, experiences such as agency and
selfhood are inferred from the consequences of our own ac-
tions (13).

In terms of neural implementation (14,15), predictive signals
may be sent from higher hierarchical levels predominantly via
glutamatergic N-methyl-D-aspartate receptor (NMDAR)
signaling; any disparity between prior belief and sensory data is
then signaled as a PE to the higher levels, mostly via gluta-
matergic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid receptors. Animal and human studies of vision support this
hypothesis (16–19). In Bayesian terms, the PE corresponds to the
difference between the means of the prior and the likelihood
ticle under the
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Figure 1. Schematic illustration of Bayesian predictive
coding as an explanatory framework for psychosis. (A)
Predictions are encoded at higher levels of a hierarchical
system and are sent as predictive signals to lower levels
(downward arrows on the left). Whenever the incoming
sensory data violate these predictions, a prediction error
signal is sent to update the predictive model at higher
levels (upward arrow on the right). Formalized as
Bayesian inference, predictions (prior) and sensory data
(likelihood) are represented in the form of probability
distributions. The posterior results from the combination
of prior and likelihood according to Bayes’ rule, weighted
by their respective precisions p (which is the inverse of
their variance s; see first equation), and updates the
predictive model (third equation). The fourth equation
rearranges the third to show that the new posterior mean
is simply the old prior mean added to a precision-
weighted prediction error. (B) In psychosis, the balance
between predictions and sensory data has been pro-
posed to be disrupted, with a decreased precision in the
representation of priors and increased precision of the
likelihood (59). This imbalance biases Bayesian inference
toward the likelihood and away from the prior, resulting
in the abnormally strong weighting of prediction error.
Candidate mechanisms for decreased prior and
increased likelihood precisions are hypofunction of glu-
tamatergic N-methyl-D-aspartate receptors (NMDA-Rs)
and increased dopamine (DA) activity, respectively.
Some psychotic phenomena may be explained by a
compensatory increase in feedback signaling at higher
levels of the hierarchy (bold arrow, upper left).
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distributions and is weighted by their relative precisions (20),
whereby precision corresponds to the inverse variances of their
respective probability distributions (Figure 1A). Roughly, this can
be thought of as the relative reliability of priors or sensory data,
the extent to which each colors current inference and learning by
weighting the impact of PEs (20). Precision is thought to be
signaled by neuromodulators such as dopamine and acetyl-
choline, depending on the particular inferential hierarchy (21–23).
Perturbations in these neuromodulators are thus candidates for
the profound departures from consensual reality that charac-
terize psychotic states (24).

Functional magnetic resonance imaging has shown that
feedback from higher- to lower-level sensory cortices carries
spatiotemporally precise and context-specific predictions
(25–29). When predictions are confirmed by sensory input,
this leads to a dampening of neural responses (30,31), while
Biological Psyc
violation of predictions leads to enhanced responses
compatible with PE signaling (26). Electrophysiological
studies investigating neural responses to deviant stimuli,
such as the mismatch negativity, suggest a hierarchical or-
ganization of prediction and PE signaling (32–34). In the
time-frequency domain, oscillatory signals have been related
to predictive coding, with feedback signaling of predictions
being mediated predominantly by the alpha/beta frequency
bands and feedforward PE signaling by gamma-band
activity (14,35–37).

There is a deep relevance of this account to psychosis, in
terms of both neurobiology (glutamatergic and dopaminergic
systems in schizophrenia, acetylcholine in hallucinosis) and
phenomenology (perception, beliefs, agency, and ipseity). We
now outline previous theories of psychosis that are highly
relevant to the predictive coding account (38).
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PRECURSOR THEORIES OF PREDICTIVE CODING

Anticipating the focus of predictive coding accounts on
perceptual inference, and in line with phenomenological
observations (39–41), early theories of psychosis empha-
sized altered perception. Maher (42) highlighted the failure
to integrate sensory input with learned expectations, which
was further developed by Gray et al. (43) and Hemsley and
Garety (44). Hemsley and Garety (44) put forth the first
explicitly Bayesian analysis of delusions, suggesting how
belief, evidence, and their disrupted interaction could garner
aberrant inference. Hemsley and Garety (44) and Gray et al.
(43) argued that perception proceeded through modeling of
the world and that neural signals normally evoked by sur-
prising events are inappropriately engaged in psychosis. As
a consequence, patients attend to and learn about events
that others would ignore, forming the grounds for both
hallucinations and delusions. A similar idea was later
developed in the wake of fundamental discoveries regarding
the role of dopamine in motivational salience and reward PE
signaling (45,46). Heinz (47) and Kapur (48) proposed that
excessive dopamine signaling results in a misattribution of
salience to normally inconspicuous events, which then demand
explanation, culminating in delusions. Another influential theory
of psychosis, the comparator model, suggested impaired pre-
dictive signaling as a key mechanism underlying hallucinations
(49) and later so-called passivity phenomena, such as the
experience of one’s actions or thoughts being externally
controlled (50). The comparator model proposes a failure to
predict one’s own actions owing to impaired corollary discharge,
which normally serves to predict and explain away the sensory
consequences of self-initiated actions. Later versions suggested
that the consequences of any action are predicted by a neural
forward model (51) and that it is the reduced precision of
these predictions that leads to the experience of alien
control (13,52).

Most of these models focused on one specific symptom
dimension. However, the above-chance co-occurrence of a
number of characteristic phenomena in psychotic disorders
demands theories that can accommodate multiple symptoms.
Moreover, most earlier theories failed to integrate the multitude
of documented neurobiological abnormalities and focused on
one particular mechanism while disregarding others. For
instance, while the idea of salience misattribution related de-
lusions primarily to dopamine dysfunction, more recent ac-
counts along these lines have provided a broader picture by
outlining how dopaminergic dysfunction may be linked to
altered glutamatergic and gamma-aminobutyric acidergic
neurotransmission (53,54). Meanwhile, neurocognitive theories
have made advances largely at the conceptual level. Empirical
tests of these theories could yield evidence for a theory or
against it but could not provide quantitative, mechanistic evi-
dence. Predictive coding can provide such mechanistic evi-
dence by estimating model parameters at the level of the
individual (55–57), and relating those parameters to the severity
and type of psychotic symptoms.

A PREDICTIVE CODING ACCOUNT OF PSYCHOSIS

In Bayesian predictive coding schemes, the PE is affected
by the precision of the sensory data: if it is high, the
636 Biological Psychiatry November 1, 2018; 84:634–643 www.sobp.o
precision-weighted PE in case of a mismatch will be greater,
and vice versa (Figure 1A)—just as in classical statistical
inference, the t statistic is greater if the standard error of the
data is smaller. Furthermore, the degree to which a prior
belief will change in response to a PE is also determined by
its own precision: an imprecise prior will update more than a
precise one will. It is crucial to represent accurately the
precisions of both prior beliefs and sensory data, as a failure
to do so will lead to false inferences (just as overestimating
the precision of the data causes type I errors). Psychosis
has been related to a decreased precision of prior beliefs
and/or increased precision of sensory data (13,24,58–61).
This imbalance in precisions shifts the posterior toward the
sensory data and away from the prior (Figure 1B), and
inference is thus driven more strongly by the sensory data.

This notion, which we here refer to as canonical predictive
coding account of psychosis, is supported by several lines of
evidence. For example, psychosis has been associated with a
greater resistance to visual illusions (which rely on prior beliefs
for their effects), a failure to attenuate sensory consequences
of self-generated actions, impaired smooth visual pursuit of a
moving target, but improved tracking of unpredictable changes
in target motion, a decreased influence of stimulus predict-
ability on brain responses [e.g., N400, P300, mismatch nega-
tivity; but see Erickson et al. (62)], and a loss of corticothalamic
connectivity [for reviews, see Adams et al. (59) and Notredame
et al. (61)]. The main neurotransmitter alterations that are
thought to underlie this predictive coding abnormality are
hypofunction of cortical NMDARs and gamma-aminobutyric
acidergic neurons as well as elevated striatal dopamine D2

receptor activity, as reviewed elsewhere (24,59,63). The
resulting aberrant encoding of precision could lead to an
abnormally strong weighting of PEs, which in turn leads to
aberrant learning and the formation of delusional beliefs
(53,58,59,64). This canonical predictive coding account of
psychosis is not without controversy. Some frank psychotic
symptoms have been related to increased prior precision and
therefore a stronger impact of prior beliefs. We return to this
issue below.

One strength of predictive coding is that it is more
generalized than earlier accounts, which tended to localize
the pathology to a specific brain area or psychological
function, e.g., the pathway connecting the subiculum to the
nucleus accumbens (43), striatal dopamine release (47,48),
or altered corollary discharge (50). By providing a generic
framework compatible with previous neurocognitive theories
and neurobiological data, predictive coding also holds
promise of accounting for more than one psychotic symp-
tom. It provides a plausible explanation not only for delu-
sional mood and paranoid delusions, akin to the aberrant
salience account (47,48), but also for hallucinations (61,63)
and passivity phenomena (13,59). On the predictive coding
view, corollary discharge becomes a prediction of the sen-
sory consequences of action. A failure of that prediction
renders those consequences surprising, garnering the
inference that actions were under external control rather than
self-authored.

While predictive coding thus has the potential to unify
accounts of psychosis (59) and integrate empirical evi-
dence at different levels of observation and within a formal
rg/journal
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quantitative model, a number of important challenges
remain.

The Heterogeneity of Psychosis

The heterogeneity of psychosis and the fact that delusions and
hallucinations co-occur, but to varying degrees, demands
explanation. However, an overly flexible or general theory that
explains everything will be of little use. In our view, predictive
coding puts forward a skeletal understanding of how, given a
perturbation to a component of the model, the phenomeno-
logical outcome has particular characteristics. In other words,
predictive coding does not reduce psychosis to a single cause,
but rather attempts to show how different underlying patho-
physiologies could perturb the system in ways that produce
overlapping phenomenologies.

This challenge is exemplified by arguments as to whether a
single deficit within a predictive coding model can explain both
perceptual and cognitive aspects of psychotic symptoms. The
two-factor account (65) invokes both perceptual and cognitive
problems in the genesis of some delusions, based on the
observation of both abnormal percepts and bizarre explana-
tions of these percepts. According to predictive coding,
reduced precision of priors could potentially account for both
factors, given that it would alter perceptual inference and make
cognitive explanations for altered percepts less constrained
(58). Recent neurobiological work, however, has raised the
question of whether a loss of prior precision (e.g., prefrontal
hypoconnectivity) and gain in sensory precision (e.g., sensory
hyperconnectivity) may indeed be two separate factors in the
illness (66,67). These observations might be reconciled by
adding some nuance to the single-layer predictive coding
example outlined above. Predictive coding actually takes place
across large multilevel hierarchies in which the precision
weighting of PEs may be controlled—at least in part—
independently at different levels and in different sensory mo-
dalities (68). Thus, NMDAR (or other neuromodulatory)
dysfunction may have widespread and diverse effects on the
precision of prior beliefs in perceptual and cognitive domains.
Furthermore, NMDAR-mediated interneuron dysfunction may
not only disinhibit (i.e., amplify) sensory areas, but also reduce
the stability of more sustained representations in higher areas
(i.e., reduce the signal-to-noise ratio), leading to increased
sensory and decreased prior precision, respectively.

A recent study emphasized the importance of analyzing the
different weightings of priors that may be implemented at
different hierarchical levels. The authors probed the use of prior
knowledge to perceive the gist versus the details of ambiguous
images in a healthy population with varying degrees of hallu-
cination and delusion proneness (69). Hallucination proneness
correlated with stronger employment of global (gist) and local
(detail) priors, whereas delusion proneness was associated
with less reliance on local priors. This raises a hitherto un-
derappreciated mechanism through which the heterogeneity in
psychotic phenomenology could be explained, namely differ-
ential weightings of specific hierarchical levels in different
psychotic symptoms (70). The neural circuits and neuro-
chemical mechanisms of these effects ought to be established.
Where to draw the line between perceptual and conceptual
processing remains a challenge, and indeed, whether and how
Biological Psyc
high-level prior beliefs modulate perceptual processes is
controversial (71). However, recent neural data suggest that
they do (72,73), and that the impact of priors on perception
may be enhanced in those with hallucinations (74–76).

Hallucinations: Strong or Weak Priors, or Both?

Hallucinations represent a challenge, as two apparently
opposing aberrations have been proposed and there is evi-
dence supporting both. One view has linked hallucinations to a
failure to attenuate sensory precision, including the sensory
consequences of inner speech, analogous to the mechanism
that is thought to underlie delusions of control (58,77–80). This
would correspond to the notion of low precision of priors
relative to a disproportionately high precision of neural signals
that encode inner speech in auditory cortex, akin to the ca-
nonical predictive coding account. Indeed, hallucination
severity in patients with schizophrenia is associated with a
failure to attenuate predictable signals in the somatosensory
cortex (81). Similarly, a model-based functional magnetic
resonance imaging study using probabilistic presentation of
speech stimuli found diminished auditory cortex PE-related
activations and deactivations to the unexpected presence or
absence of speech, respectively, in patients with hallucina-
tions, suggesting aberrant PE signaling (82).

Alternatively, hallucinations may result from enhanced
rather than weakened top-down predictive signaling (i.e.,
increased precision of priors) on neural activity in sensory
cortices (83). Perception would therefore rely less on the
sensory input and more on beliefs. Supporting this notion,
directional bottom-up connectivity from Wernicke’s to Broca’s
areas is reduced in individuals who hear voices (84). Top-down
predictions from Broca’s area may thus be less constrained by
sensory information. Recently, people who hear voices were
found to be more susceptible to conditioning-induced hallu-
cinations, and accordingly, modeling in a Bayesian framework
showed stronger perceptual priors (74). Another recent study
investigated the perception of auditory stimuli under different
levels of uncertainty (75). Hallucinations in schizophrenia pa-
tients correlated with a perceptual bias that reflected increased
weighting of prior beliefs. This bias could be pharmacologically
induced by amphetamine and strongly correlated with striatal
dopamine release. Together, these findings favor a strong-
prior account of hallucinations and thus call into question the
suggestion that aberrant salience of inner speech confers the
content of voices.

How can these apparently contradictory findings be
reconciled? The auditory system may have a strong prior for
speech—perhaps because this is a highly salient signal for our
species—and as such, noisy signals in the auditory cortex are
resolved by that prior into perceived speech (akin to our pro-
pensity to see faces in clouds, for example). At the same time,
corollary discharge (i.e., descending predictions regarding the
consequences of action) may still have a role, in ascribing
agency to those experiences. In this case, disruption of corollary
discharge as a form of predictive signaling may be more broadly
relevant for both hallucinations and delusions, which entail
aberrant inferences about both agency and the intentions of
others. This may explain the lack of specificity of corollary
discharge deficits to specific positive symptoms (85,86).
hiatry November 1, 2018; 84:634–643 www.sobp.org/journal 637
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Furthermore, priors at low and high hierarchical levels may
be differentially affected. Neurobiologically, this may be
mediated by the higher density of recurrent connections in
higher-level association cortices, compared with primary sen-
sory regions, such that a psychotogenic perturbation that im-
pacts excitatory/inhibitory (E/I) balance may have more
profound effects higher rather than lower in the hierarchy (87)
[see Jardri and Deneve (10) for a detailed exposition of the
role of E/I balance in learning, inference, and psychosis]. In
brief, the E/I relationships may implement exactly the predic-
tive cancellation mechanisms that underlie predictive coding.
Blocking NMDARs (with ketamine for example) profoundly al-
ters E/I balance (88,89), thus altering the balance between
priors and PEs (24), perhaps differently at different hierarchical
levels (87). Many findings in psychotic or psychosis-prone in-
dividuals point to weak priors that are implemented at low
levels [e.g., visual illusions; see above and (24,59,63)]. Impaired
predictive coding at low levels may result in perceptual un-
certainties that may be (partly) compensated by reliance on
high-level abstract or semantic prior beliefs (Figure 1B). This
may result in a top-down enhancement of signals in sensory
cortices, thus facilitating hallucinations. There are even data
suggesting that psychotic individuals with and without hallu-
cinations utilize different priors to different extents in the same
task. Powers et al. (74) found that people with hallucinations
had strong perceptual priors that were not present in psychotic
patients who did not hallucinate and who, indeed, may have
had weak priors. The presence of strong priors and their im-
munity to updating were associated with strong insula and
hippocampal responses, respectively (74). These psychologi-
cal and circuit observations should be replicated, manipulated
with transcranial magnetic stimulation (90) or real-time neuro-
feedback (91), and the mediating role of glutamate and E/I
balance at different hierarchical levels should be explored in
human pharmacological and patient studies as well as animal
models.
Changes in Psychotic Phenomenology Over Time

Another important challenge for theories of psychosis is that
the pathophysiology may change over the course of the un-
derlying disorder (92). While changes of symptomatology over
time were emphasized by phenomenologists (93,94), they are
largely neglected by current classification systems. For
example, delusions are often highly fixed and incorrigible in
chronic patients, while they are still malleable in early psy-
chosis (24). With time and treatment, they may become less
impactful on function. Thus, the underlying pathophysiology
may also change over time and differentially contribute to
psychopathology at different stages of illness. Evidence from
magnetic resonance spectroscopy suggests that alterations in
glutamatergic neurotransmission may change over the course
of schizophrenia (95,96). Indeed, ketamine infusion in healthy
volunteers may better mimic the E/I dysbalance and hierar-
chical perturbations observed in first-episode patients than in
those with more chronic illness (97). We note with interest that
the metabotropic glutamate agonist pomaglumetad appears to
have efficacy in early rather than chronic schizophrenia, sug-
gesting that hyperglutamatergia is more involved around the
onset and early phases of illness (98,99). The issue is further
638 Biological Psychiatry November 1, 2018; 84:634–643 www.sobp.o
complicated by the possibility that such changes over time are
not limited to aspects of brain development and learning, but
rather involve ongoing neurobiological and environmental in-
fluences, including effects of antipsychotic medication and
drug use. Current data are consistent with the idea that with
chronicity, prefrontal glutamate signaling may progress from
an excess to an insufficiency. Future work with magnetic
resonance spectroscopy and electrophysiological markers of
E/I balance could track these changes and pinpoint their ef-
fects on predictive coding (100). More broadly, in predictive
coding, the brain is involved in a dynamic prediction-based
negotiation with the world, which evolves as the person tries
out new models of reality. While they eventually settle on be-
liefs that become engrained, one would expect the patient’s
priors to evolve across time.
The Persistence of Psychotic Experiences

An important unresolved question is how aberrant predictive
coding might account not only for the emergence of delusions,
but also for their persistence. It is a defining feature of de-
lusions that they persist despite contradicting evidence. This
suggests an excessive influence of delusional beliefs on the
perception of new information [e.g., (101)], which would entail
an increased precision of delusion-related priors. In contrast,
the emergence of delusions might result from decreased pre-
cision of priors as outlined above (24,58,59) (Figure 1B). Evi-
dence from experiments using the NMDAR antagonist
ketamine, which has been previously shown to induce aberrant
PEs, suggests a link between PE signaling and memory
reconsolidation, which could strengthen delusional beliefs and
foster their persistence (102,103). An additional (or comple-
mentary) mechanism could be related to an imbalance be-
tween priors at low and high levels of the predictive coding
hierarchy, as suggested by a series of studies investigating
perceptual inference in relation to delusions (72,104–106). In
contrast to weak low-level priors, the effects of more abstract
high-level priors may be abnormally strong (Figure 1B). Such a
mechanism could sculpt perception into conformity with
delusional beliefs and thus contribute to their persistence. An
increased influence of learned high-level beliefs in relation to
psychotic symptoms was also reported for the perception of
images with impoverished sensory information where
perceptual inference relies strongly on priors (107). Differential
roles of priors at low and high levels of the hierarchy are also
suggested by recent evidence relating delusion proneness to
reduced usage of prior beliefs in perceptual but not cognitive
decision making (108).

Furthermore, aberrant predictive coding could render other
people unreliable, to be treated with suspicion. This could
account for the social content of psychotic symptoms, but
may also explain why they persist, and even strengthen, in the
face of efforts to refute them (109). Perceptible social cues may
be more uncertain than nonsocial ones, because they may or
may not serve as reliable signals of others’ intentions, which
we can never fully know (110). Consequently, high-level social
priors may be particularly influential in the perception and
beliefs of those with psychotic symptoms (109). There may
also be a motivated quality to psychotic inferences (111). That
is, psychotic symptoms may provide a form of personal
rg/journal
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identity, and personal-level data may be assumed to be more
reliable than those from others. Finally, beliefs have value in
and of themselves. Psychotic symptoms may be seen as at-
tempts to garner some advantage, perhaps by convincing
others of their veracity (111). This renders them susceptible to
the same biases and asymmetries in updating observed with
nondelusional beliefs (111). These asymmetries can be
explained with a Bayesian model, if we allow agents to derive
utility from their beliefs (112).
A ROADMAP FOR FUTURE RESEARCH

Predictive coding was not conceived to explain psychosis. It is
a general theory of brain function. If it is a useful theory of how
the brain works, then it should also be useful to account for
states of aberrant brain function such as psychosis. The
question is therefore not whether there is one specific abnor-
mality in predictive coding that can explain psychosis, but
rather whether predictive coding provides a framework that
can help us to better understand psychosis. We believe that its
greatest strength is that it can be formulated in computational
terms and therefore lends itself to rigorous quantitative testing.
However, while there is abundant empirical evidence
compatible with a predictive coding account, more research is
needed that explicitly tests (and potentially falsifies) predictions
derived from this theory. We therefore advocate research that
addresses the outlined challenges head-on, in a hypothesis-
driven way, and with the methodological rigor that is pro-
vided by the computational framework.

One key question that has received too little attention re-
lates to the hierarchical nature of predictive coding. Potentially
different roles of high and low levels of the hierarchy were
highlighted throughout our discussion of important challenges
to predictive coding. Such differences may resolve apparent
inconsistencies regarding weak versus strong priors, help to
understand the heterogeneity in the phenomenology of psy-
chosis, and explain changes in symptomatology over time.
Table 1 summarizes the theory and controversy regarding the
predictive coding alterations underlying hallucinations and
delusions. Experimental tasks are needed that reliably pinpoint
predictive coding at low versus high levels of the hierarchy.
Such tasks could then be used in conjunction with computa-
tional modeling [for a recent example, see Weilnhammer et al.
(100)] to directly test, e.g., the hypothesis that delusions are
Table 1. Predictive Coding and Positive Symptoms: Theory and

Symptom Feature Theory

Hallucinations Percepts without external stimulus Strong perceptual p

Speech from external agents Weak corollary disch

Delusions Delusional mood/aberrant salience Weak perceptual pri

Fixed in the face of
contradictory evidence

Strong memory reco
strong conceptua

Here we highlight the facets of hallucinations and delusions that have be
empirical support; however, overarching theories—grounded in a broade
evolution and trajectories of positive symptoms—are required. We focu
psychotic symptoms such as thought disorder and passivity phenomena fr
(109) and Sterzer et al. (13).

Biological Psyc
related to weak low-level priors and hallucinations are related
to strong high-level priors.

Another important direction will be research into neural
markers of hierarchical feedback and feedforward processing
and their relation to the precisions of prior beliefs and PEs,
respectively, in Bayesian inference. Recent advances in the
neuroimaging of laminar anatomical projection patterns will
help in this regard (29,36). Computational modeling should be
used to examine how precision is reflected in neural mea-
surements, and rigorous state-of-the-art model comparison is
needed to probe predictive coding against other models of
message passing. Pharmacological models are a promising
approach to probe the roles of candidate neurotransmitter
systems. Their direct comparison with neural predictive coding
alterations in relation to specific psychotic symptom di-
mensions will help to address key challenges in psychosis
research, such as the phenomenological heterogeneity of
psychosis. Animal models should be further developed into an
additional pillar of psychosis research, as important insights
are expected from a more targeted manipulation of specific
brain circuits and transmitter systems. For example, opto-
genetic manipulation of E/I balance (113) could be used to
explore the computations underlying predictive coding. Simi-
larly, models that identify how genes relate to brain develop-
ment (114) and changes the canonical microcircuits (14)
involved in aberrant predictive coding are warranted. Ideally,
different levels of investigation should be translationally inte-
grated within a common computational modeling framework.

At the level of symptoms, we need a better understanding of
the processes underlying specific psychotic symptoms and their
interrelationships. For example, delusion- and hallucination-
related processes should be investigated at the same time in
the same patients to examine how these neural and symptom
processes are organized. Intriguing epidemiological data suggest
a hierarchy from hallucinations to delusions (115). Indeed, what
we learn about these processes should be applied at the level of
diagnostic entities, with a number of possible implications. First,
understanding the predictive coding mechanisms underlying
psychosis may lead to the delineation of new entities within and
across existing diagnostic groups such as schizophrenia and
bipolar disorder. Second, models are needed that distinguish
psychosis from other psychiatric syndromes. For example, cur-
rent models of autism are strikingly similar to the predictive
coding account of psychosis (116–118). Future investigations
Controversy

Literature Controversy

riors Powers et al. (120) Entails weak and strong prior
beliefs—for perception and
action—in the same brain
at the same time

arge Thakkar et al. (86)

ors Corlett et al. (121) Necessitates a transition from
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should examine differences and commonalities in neural com-
putations in individuals with psychosis and those with autism
(117). Third, predictive coding can relate psychosis to “normal”
brain function, which may help to destigmatize the disorder (92):
psychosis may be understood as a variety of brain function, in
line with the so-called continuum view (119), which considers
psychotic symptoms as extreme expressions of normal traits.
“False inferences” made by psychotic individuals may be
rendered comprehensible given the premises of predictive cod-
ing. As Adams et al. (59) stated, “From the point of view of the
subject its inferences are Bayes-optimal. It is only our attribution
of the inference as false that gives it an illusory or delusionary
aspect.”

Importantly, a more complete model of psychosis may help
patients understand their experiences, which could aid the
development of psychotherapies. Moreover, predictive coding
offers the possibility of more specific and quantitative pre-
dictions about symptoms and their mechanisms. Such an
approach may in turn help not only to use those drugs that are
currently available in a more targeted way, but also to develop
new pharmacological interventions.
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